
DIFFERENTIATION 
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PART 1 
Mr C’s IB Standard Notes 



Make sure you read through 

everything and the try 

examples for yourself before 

looking at the solutions 

In this PDF you can find the following: 

 

1. Notation 

 

2. Keywords 

 

3. Basic Methods 

 

4. Standard Derivatives and Integrals 



NOTATION 

Writing derivatives and integrals 

Functions are typically written 

two different ways 



NOTATION 

Writing derivatives and integrals 

y =….. 

𝑦 = 𝑒𝑥 + sin 2𝑥 +⋯ 



NOTATION 

Writing derivatives and integrals 

Or f(x)=…. 

𝑦 = 𝑒𝑥 + sin 2𝑥 +⋯ 𝑓(𝑥) = 𝑒𝑥 + sin 2𝑥 +⋯ 



NOTATION 

Writing derivatives and integrals 

We have different ways to write 

derivatives 

𝑦 = 𝑒𝑥 + sin 2𝑥 +⋯ 𝑓(𝑥) = 𝑒𝑥 + sin 2𝑥 +⋯ 



NOTATION 

Writing derivatives and integrals 

1st Derivative 

𝑦 = 𝑒𝑥 + sin 2𝑥 +⋯ 𝑓(𝑥) = 𝑒𝑥 + sin 2𝑥 +⋯ 



NOTATION 

Writing derivatives and integrals 

1st Derivative 

𝑦 = 𝑒𝑥 + sin 2𝑥 +⋯ 𝑓(𝑥) = 𝑒𝑥 + sin 2𝑥 +⋯ 

𝑑𝑦

𝑑𝑥
= ⋯ 𝑓′(𝑥) = ⋯ 



NOTATION 

Writing derivatives and integrals 

2nd  Derivative 

(differentiate again) 

𝑦 = 𝑒𝑥 + sin 2𝑥 +⋯ 𝑓(𝑥) = 𝑒𝑥 + sin 2𝑥 +⋯ 

𝑑𝑦

𝑑𝑥
= ⋯ 𝑓′(𝑥) = ⋯ 



NOTATION 

Writing derivatives and integrals 

2nd  Derivative 

(differentiate again) 

𝑦 = 𝑒𝑥 + sin 2𝑥 +⋯ 𝑓(𝑥) = 𝑒𝑥 + sin 2𝑥 +⋯ 

𝑑𝑦

𝑑𝑥
= ⋯ 𝑓′(𝑥) = ⋯ 

𝑑2𝑦

𝑑𝑥2
= ⋯ 𝑓′′(𝑥) = ⋯ 



NOTATION 

Writing derivatives and integrals 

3nd  Derivative 

(and again) 

𝑦 = 𝑒𝑥 + sin 2𝑥 +⋯ 𝑓(𝑥) = 𝑒𝑥 + sin 2𝑥 +⋯ 

𝑑𝑦

𝑑𝑥
= ⋯ 𝑓′(𝑥) = ⋯ 

𝑑2𝑦

𝑑𝑥2
= ⋯ 𝑓′′(𝑥) = ⋯ 



NOTATION 

Writing derivatives and integrals 

3nd  Derivative 

(and again) 

𝑦 = 𝑒𝑥 + sin 2𝑥 +⋯ 𝑓(𝑥) = 𝑒𝑥 + sin 2𝑥 +⋯ 

𝑑𝑦

𝑑𝑥
= ⋯ 𝑓′(𝑥) = ⋯ 

𝑑2𝑦

𝑑𝑥2
= ⋯ 𝑓′′(𝑥) = ⋯ 

𝑑3𝑦

𝑑𝑥3
= ⋯ 𝑓(𝟑)(𝑥) = ⋯ 



NOTATION 

Writing derivatives and integrals 

4th Derivative 

(yet again) 

𝑦 = 𝑒𝑥 + sin 2𝑥 +⋯ 𝑓(𝑥) = 𝑒𝑥 + sin 2𝑥 +⋯ 

𝑑𝑦

𝑑𝑥
= ⋯ 𝑓′(𝑥) = ⋯ 

𝑑2𝑦

𝑑𝑥2
= ⋯ 𝑓′′(𝑥) = ⋯ 

𝑑3𝑦

𝑑𝑥3
= ⋯ 𝑓(𝟑)(𝑥) = ⋯ 



NOTATION 

Writing derivatives and integrals 

4th Derivative 

(yet again) 

𝑦 = 𝑒𝑥 + sin 2𝑥 +⋯ 𝑓(𝑥) = 𝑒𝑥 + sin 2𝑥 +⋯ 

𝑑𝑦

𝑑𝑥
= ⋯ 𝑓′(𝑥) = ⋯ 

𝑑2𝑦

𝑑𝑥2
= ⋯ 𝑓′′(𝑥) = ⋯ 

𝑑3𝑦

𝑑𝑥3
= ⋯ 𝑓(𝟑)(𝑥) = ⋯ 

𝑑4𝑦

𝑑𝑥4
= ⋯ 𝑓(𝟒)(𝑥) = ⋯ 



NOTATION 

Writing derivatives and integrals 

And so on… 

𝑦 = 𝑒𝑥 + sin 2𝑥 +⋯ 𝑓(𝑥) = 𝑒𝑥 + sin 2𝑥 +⋯ 

𝑑𝑦

𝑑𝑥
= ⋯ 𝑓′(𝑥) = ⋯ 

𝑑2𝑦

𝑑𝑥2
= ⋯ 𝑓′′(𝑥) = ⋯ 

𝑑3𝑦

𝑑𝑥3
= ⋯ 𝑓(𝟑)(𝑥) = ⋯ 

𝑑4𝑦

𝑑𝑥4
= ⋯ 𝑓(𝟒)(𝑥) = ⋯ 



NOTATION 

Writing derivatives and integrals 

And so on… 

𝑦 = 𝑒𝑥 + sin 2𝑥 +⋯ 𝑓(𝑥) = 𝑒𝑥 + sin 2𝑥 +⋯ 

𝑑𝑦

𝑑𝑥
= ⋯ 𝑓′(𝑥) = ⋯ 

𝑑2𝑦

𝑑𝑥2
= ⋯ 𝑓′′(𝑥) = ⋯ 

𝑑3𝑦

𝑑𝑥3
= ⋯ 𝑓(𝟑)(𝑥) = ⋯ 

𝑑4𝑦

𝑑𝑥4
= ⋯ 𝑓(𝟒)(𝑥) = ⋯ 

𝒅𝒏𝒚

𝒅𝒙𝒏
= ⋯ 𝒇(𝒏)(𝒙) = ⋯ 



NOTATION 

Writing derivatives and integrals 

When we integrate we always 

write it the same way 

𝑦 = 𝑒𝑥 + sin 2𝑥 +⋯ 𝑓(𝑥) = 𝑒𝑥 + sin 2𝑥 +⋯ 



NOTATION 

Writing derivatives and integrals 

When we integrate we always 

write it the same way 

𝑦 = 𝑒𝑥 + sin 2𝑥 +⋯ 𝑓(𝑥) = 𝑒𝑥 + sin 2𝑥 +⋯ 

 𝒚𝒅𝒙 = ⋯  𝑓(𝑥) 𝑑𝑥 = ⋯ 



NOTATION 

Writing derivatives and integrals 

Make sure to include the 

variable you are integrating with 

respect to 

𝑦 = 𝑒𝑥 + sin 2𝑥 +⋯ 𝑓(𝑥) = 𝑒𝑥 + sin 2𝑥 +⋯ 

 𝒚𝒅𝒙 = ⋯  𝑓(𝑥) 𝑑𝑥 = ⋯ 



NOTATION 

Writing derivatives and integrals 

Make sure to include the 

variable you are integrating with 

respect to 

𝑦 = 𝑒𝑥 + sin 2𝑥 +⋯ 𝑓(𝑥) = 𝑒𝑥 + sin 2𝑥 +⋯ 

 𝒚𝒅𝒙 = ⋯  𝑓(𝑥) 𝑑𝑥 = ⋯ 



NOTATION 

Writing derivatives and integrals 

This is the same as the variable 

in the equation (in our case x) 

𝑦 = 𝑒𝑥 + sin 2𝑥 +⋯ 𝑓(𝑥) = 𝑒𝑥 + sin 2𝑥 +⋯ 

 𝒚𝒅𝒙 = ⋯  𝑓(𝑥) 𝑑𝑥 = ⋯ 



NOTATION 

Writing derivatives and integrals 

Sometimes the question may 

use different lettered variables 



NOTATION 

Writing derivatives and integrals 

Sometimes the question may 

use different lettered variables 

𝐴(𝑡) = 𝑒𝑡 + 2𝑡2 



NOTATION 

Writing derivatives and integrals 

Just make sure to write the 

correct derivative or integral 

𝐴(𝑡) = 𝑒𝑡 + 2𝑡2 



NOTATION 

Writing derivatives and integrals 

Just make sure to write the 

correct derivative or integral 

𝐴(𝑡) = 𝑒𝑡 + 2𝑡2 

𝑑𝐴

𝑑𝑡
= ⋯ 



NOTATION 

Writing derivatives and integrals 

Just make sure to write the 

correct derivative or integral 

𝐴(𝑡) = 𝑒𝑡 + 2𝑡2 

𝑑𝐴

𝑑𝑡
= ⋯  𝐴𝑑𝑡 = ⋯ 



KEYWORDS 

When do I differentiate? 

Make sure to look out for 

certain keywords which will let 

you know to differentiate 



KEYWORDS 

When do I differentiate? 

You might be explicitly told to 

differentiate....that’s pretty 

straight forward 

Find derivative, dy/dx, f ’(x) 



KEYWORDS 

When do I differentiate? 

You might need to find the 

gradient of a function for a 

particular value of x 

Find derivative, dy/dx, f ’(x) 

 

Gradient 

 



KEYWORDS 

When do I differentiate? 

If you want to work out normals, 

you must first find the gradient 

and then take the negative 

reciprocal (3 → −
1

3
)  

Find derivative, dy/dx, f ’(x) 

 

Gradient 

 

Equation of  Tangent or Normal 

 

 



KEYWORDS 

When do I differentiate? 

Differentiation tells you how one 

variable changes with respect to 

another, e.g. differentiate speed 

w/r to time and get acceleration 

Find derivative, dy/dx, f ’(x) 

 

Gradient 

 

Equation of  Tangent or Normal 

 

Rate of Change 

 

 

 



KEYWORDS 

When do I differentiate? 

You might need to find 

stationary or turning points of a 

curve (where gradient = 0) 

Find derivative, dy/dx, f ’(x) 

 

Gradient 

 

Equation of  Tangent or Normal 

 

Rate of Change 

 

Stationary points (max/min) 

 

 

 

 



KEYWORDS 

When do I differentiate? 

Finding the maximum or 

minimum value for a function is 

it’s optimal solution. You often 

see questions like this with 

population models. 

Find derivative, dy/dx, f ’(x) 

 

Gradient 

 

Equation of  Tangent or Normal 

 

Rate of Change 

 

Stationary points (max/min) 

 

Finding Optimum Solutions 

(best, largest, etc.) 

 

 

 

 



KEYWORDS 

When do I differentiate? 

Find derivative, dy/dx, f ’(x) 

 

Gradient 

 

Equation of  Tangent or Normal 

 

Rate of Change 

 

Stationary points (max/min) 

 

Finding Optimum Solutions 

(best, largest, etc.) 

 

 

 

 



KEYWORDS 

When do I integrate? 

There are fewer examples of 

keywords to look for when 

integrating 



KEYWORDS 

When do I integrate? 

Quite often you will simply be 

told to integrate, or given the 

integration symbol 

Find integral,  … 



KEYWORDS 

When do I integrate? 

You may be asked to find a 

particular area (e.g. beneath a 

curve, bounded between two 

curves, etc.) 

Find integral,  … 

 

Find the Area… 



KEYWORDS 

When do I integrate? 

Find integral,  … 

 

Find the Area… 

 

Volumes of Revolution 

And don’t forget there is a formula 

for integrating to find the volume 

produced when a shape is rotated 

around the x-axis 



KEYWORDS 

When do I integrate? 

Don’t forget to square the 

function first. You can multiply by 𝜋 

either at the beginning or end, it 

doesn’t make a difference. 

Find integral,  … 

 

Find the Area… 

 

Volumes of Revolution 



KEYWORDS 

When do I integrate? 

Find integral,  … 

 

Find the Area… 

 

Volumes of Revolution 



DIFFERENTIATION TECHNIQUES 

Powers of x 



DIFFERENTIATION TECHNIQUES 

Powers of x 

Any expression consisting of 

terms using xn can be 

differentiated the same way 



DIFFERENTIATION TECHNIQUES 

Powers of x 

Any expression consisting of 

terms using xn can be 

differentiated the same way 

e.g. 𝟐𝒙𝟐 +
𝒙

𝒙
 −

𝟐𝒙+𝟏

𝒙𝟑
+ 𝟕 



DIFFERENTIATION TECHNIQUES 

Powers of x 

You can differentiate terms one 

at a time, and they all follow the 

same rule 

e.g. 𝟐𝒙𝟐 +
𝒙

𝒙
 −

𝟐𝒙+𝟏

𝒙𝟑
+ 𝟕 



DIFFERENTIATION TECHNIQUES 

Powers of x 

Multiply by the power 

Subtract one from the power 

e.g. 𝟐𝒙𝟐 +
𝒙

𝒙
 −

𝟐𝒙+𝟏

𝒙𝟑
+ 𝟕 

𝟒𝒙 f ’(x)= 



DIFFERENTIATION TECHNIQUES 

Powers of x 

Sometimes you might have to 

rewrite using powers and rules 

of indices 

e.g. 𝟐𝒙𝟐 +
𝒙

𝒙
 −

𝟐𝒙+𝟏

𝒙𝟑
+ 𝟕   

𝟒𝒙 f ’(x)= 



DIFFERENTIATION TECHNIQUES 

Powers of x 

Sometimes you might have to 

rewrite using powers and rules 

of indices 

e.g. 𝟐𝒙𝟐 +
𝒙

𝒙
 −

𝟐𝒙+𝟏

𝒙𝟑
+ 𝟕   

=
𝒙
𝟏
𝟐

𝒙
 

𝟒𝒙 f ’(x)= 



DIFFERENTIATION TECHNIQUES 

Powers of x 

And then finally differentiate 

e.g. 𝟐𝒙𝟐 +
𝒙

𝒙
 −

𝟐𝒙+𝟏

𝒙𝟑
+ 𝟕   

=
𝒙
𝟏
𝟐

𝒙
 

= 𝒙−
𝟏
𝟐 

𝟒𝒙 f ’(x)= 



DIFFERENTIATION TECHNIQUES 

Powers of x 

e.g. 𝟐𝒙𝟐 +
𝒙

𝒙
 −

𝟐𝒙+𝟏

𝒙𝟑
+ 𝟕   

=
𝒙
𝟏
𝟐

𝒙
 

= 𝒙−
𝟏
𝟐 

−
𝟏

𝟐
𝒙−
𝟑
𝟐 𝟒𝒙 f ’(x)= 



DIFFERENTIATION TECHNIQUES 

Powers of x 

You can also split up fractions to 

make life easier  

(all terms on top divide by 

everything on the bottom) 

e.g. 𝟐𝒙𝟐 +
𝒙

𝒙
 −

𝟐𝒙+𝟏

𝒙𝟑
+ 𝟕   

𝒙
𝟏
𝟐

𝒙
 

𝒙−
𝟏
𝟐 

−
𝟏

𝟐
𝒙−
𝟑
𝟐 𝟒𝒙 f ’(x)= 



DIFFERENTIATION TECHNIQUES 

Powers of x 

e.g. 𝟐𝒙𝟐 +
𝒙

𝒙
 −

𝟐𝒙+𝟏

𝒙𝟑
+ 𝟕 

𝒙
𝟏
𝟐

𝒙
 

𝒙−
𝟏
𝟐 

−
𝟏

𝟐
𝒙−
𝟑
𝟐 

−
𝟐𝒙

𝒙𝟑
 +

𝟏

𝒙𝟑
 

𝟒𝒙 f ’(x)= 



DIFFERENTIATION TECHNIQUES 

Powers of x 

e.g. 𝟐𝒙𝟐 +
𝒙

𝒙
 −

𝟐𝒙+𝟏

𝒙𝟑
+ 𝟕 

𝒙
𝟏
𝟐

𝒙
 

𝒙−
𝟏
𝟐 

−
𝟏

𝟐
𝒙−
𝟑
𝟐 

−
𝟐𝒙

𝒙𝟑
 +

𝟏

𝒙𝟑
 

−𝟐𝒙−𝟐 +𝒙−𝟑 

𝟒𝒙 f ’(x)= 



DIFFERENTIATION TECHNIQUES 

Powers of x 

e.g. 𝟐𝒙𝟐 +
𝒙

𝒙
 −

𝟐𝒙+𝟏

𝒙𝟑
+ 𝟕 

𝒙
𝟏
𝟐

𝒙
 

𝒙−
𝟏
𝟐 

−
𝟏

𝟐
𝒙−
𝟑
𝟐 

−
𝟐𝒙

𝒙𝟑
 +

𝟏

𝒙𝟑
 

+𝟒𝒙−𝟑 

−𝟐𝒙−𝟐 +𝒙−𝟑 

−𝟑𝒙−𝟒 𝟒𝒙 f ’(x)= 



DIFFERENTIATION TECHNIQUES 

Powers of x 

e.g. 𝟐𝒙𝟐 +
𝒙

𝒙
 −

𝟐𝒙+𝟏

𝒙𝟑
+ 𝟕 

𝒙
𝟏
𝟐

𝒙
 

𝒙−
𝟏
𝟐 

−
𝟏

𝟐
𝒙−
𝟑
𝟐 

−
𝟐𝒙

𝒙𝟑
 +

𝟏

𝒙𝟑
 

+𝟒𝒙−𝟑 

−𝟐𝒙−𝟐 +𝒙−𝟑 

−𝟑𝒙−𝟒 𝟒𝒙 f ’(x)= 



DIFFERENTIATION TECHNIQUES 

Powers of x 

e.g. 𝟐𝒙𝟐 +
𝒙

𝒙
 −

𝟐𝒙+𝟏

𝒙𝟑
+ 𝟕 

𝒙
𝟏
𝟐

𝒙
 

𝒙−
𝟏
𝟐 

−
𝟏

𝟐
𝒙−
𝟑
𝟐 

−
𝟐𝒙

𝒙𝟑
 +

𝟏

𝒙𝟑
 

+𝟒𝒙−𝟑 

−𝟐𝒙−𝟐 +𝒙−𝟑 

−𝟑𝒙−𝟒 

When you differentiate a 

constant it disappears 

(7 𝑖𝑠 7𝑥0), multiplying by 0 

makes it all 0  

+𝟎 𝟒𝒙 f ’(x)= 



DIFFERENTIATION TECHNIQUES 

Powers of x 

e.g. 𝟐𝒙𝟐 +
𝒙

𝒙
 −

𝟐𝒙+𝟏

𝒙𝟑
+ 𝟕 

𝒙
𝟏
𝟐

𝒙
 

𝒙−
𝟏
𝟐 

−
𝟏

𝟐
𝒙−
𝟑
𝟐 

−
𝟐𝒙

𝒙𝟑
 +

𝟏

𝒙𝟑
 

+𝟒𝒙−𝟑 

−𝟐𝒙−𝟐 +𝒙−𝟑 

−𝟑𝒙−𝟒 𝟒𝒙 f ’(x)= 



INTEGRATION TECHNIQUES 

Powers of x 



INTEGRATION TECHNIQUES 

Powers of x 

 

Integration is the reverse of 

differentiation 



INTEGRATION TECHNIQUES 

Powers of x 

e.g.   5𝑥3 + 4 𝑑𝑥 



INTEGRATION TECHNIQUES 

Powers of x 

 
To differentiate you: 

x power, -1 from power 

 

Therefore to integrate you: 

+1 to power, ÷power 

e.g.   5𝑥3 + 4 𝑑𝑥 



INTEGRATION TECHNIQUES 

Powers of x 

 
To differentiate you: 

x power, -1 from power 

 

Therefore to integrate you: 

+1 to power, ÷power 

e.g.   5𝑥3 + 4 𝑑𝑥 



INTEGRATION TECHNIQUES 

Powers of x 

 
To differentiate you: 

x power, -1 from power 

 

Therefore to integrate you: 

+1 to power, ÷power 

e.g.   5𝑥3 + 4 𝑑𝑥 



INTEGRATION TECHNIQUES 

Powers of x 

To differentiate you: 

x power, -1 from power 

 

Therefore to integrate you: 

+1 to power, ÷power 

e.g.   5𝑥3 + 4 

5

4
𝑥4 

𝑑𝑥 



INTEGRATION TECHNIQUES 

Powers of x 

 
Integrating a constant just puts 

an ‘x’ on the end of it 

4 is 4𝑥0 →
4

1
𝑥1  

e.g.   5𝑥3 + 4 

5

4
𝑥4 

𝑑𝑥 



INTEGRATION TECHNIQUES 

Powers of x 

Integrating a constant just puts 

an ‘x’ on the end of it 

4 is 4𝑥0 →
4

1
𝑥1  

e.g.   5𝑥3 + 4 

5

4
𝑥4 +4𝑥 

𝑑𝑥 



INTEGRATION TECHNIQUES 

Powers of x 

At this point it looks as though 

we are correct. The integral we 

have can be differentiated and 

give the original expression 

e.g.   5𝑥3 + 4 

5

4
𝑥4 +4𝑥 

𝑑𝑥 



INTEGRATION TECHNIQUES 

Powers of x 

 
However we also must include 

a constant term that might have 

differentiated to 0. 

e.g.   5𝑥3 + 4 

5

4
𝑥4 +4𝑥 

𝑑𝑥 



INTEGRATION TECHNIQUES 

Powers of x 

However we also must include 

a constant term that might have 

differentiated to 0. 

e.g.   5𝑥3 + 4 

5

4
𝑥4 +4𝑥 

+0 𝑑𝑥 



INTEGRATION TECHNIQUES 

Powers of x 

 
e.g.   5𝑥3 + 4 

5

4
𝑥4 +4𝑥 

+0 

+𝐶 

𝑑𝑥 



INTEGRATION TECHNIQUES 

Powers of x 

 
This is our constant of 

integration, C 

 

Always remember to write it at 

the end of an indefinite integral 

e.g.   5𝑥3 + 4 

5

4
𝑥4 +4𝑥 

+0 

+𝐶 

𝑑𝑥 



INTEGRATION TECHNIQUES 

Powers of x 

 
e.g.   5𝑥3 + 4  

5

4
𝑥4 +4𝑥 +𝐶 

Including limits 

𝑑𝑥 



INTEGRATION TECHNIQUES 

Powers of x 

 
e.g.   5𝑥3 + 4  

5

4
𝑥4 +4𝑥 +𝐶 

Including limits 

The one time you do not need 

to include C, is when you are 

evaluating the integral  

(known as a definite integral) 

𝑑𝑥 



INTEGRATION TECHNIQUES 

Powers of x 

 
e.g.   5𝑥3 + 4  

5

4
𝑥4 +4𝑥 +𝐶 

Including limits 

e.g.   5𝑥3 + 4
2

−1
 dx 

The limits tell you numbers to 

substitute into your final 

expression as x. 

𝑑𝑥 



INTEGRATION TECHNIQUES 
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And integrating… Derivatives Integrals 
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