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We present two different proofs of Pick’s theorem and analyse in what ways
might be perceived as beautiful by working mathematicians. In particular, we
discuss two concepts, generality and specificity, that appear to contribute to
beauty in different ways. We also discuss possible implications on insight into
the nature of beauty in mathematics, and how the teaching of mathematics could
be impacted, especially in countries in which discussions of beauty and aesthet-
ics are notably absent from curricular documents.
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INTRODUCTION

The claim that mathematics contains elements of deep beauty seems uncontro-
versial. The literature abounds with references to this beauty and descriptions
of its nature. For instance S. Chandrasekhar, a Nobel prize winning physicist,
once wrote, “a discovery motivated by a search after the beautiful in mathe-
matics should find its exact replica in Nature, persuades me to say that beauty
is that to which the human mind responds at its deepest and most profound”
(Chandrasekhar, 1987, p. 54). And G. H. Hardy, a leading mathematician of the
1900’s, asserted, “The mathematician’s patterns, like the painter’s or the poet’s,
must be beautiful; the ideas, like the colors or the words, must fit together in a
harmonious way” (Hardy, 1940, p. 85). We even see references to the beauty of
mathematics in poetry, such as Edna St. Millay’s famous line, “Euclid alone has
looked at beauty bare” (Millay, 1941).
What is less clear is why mathematics appears to us as beautiful. Hardy claimed
that the sense of beauty comes, at least in part, from a sense of surprise (Hardy,
1940, p. 113). Gian-Carlo Rota refutes this view. He gives Morley’s theorem as
an example. Morley’s theorem states that adjacent angle trisectors of an arbitrary
triangle meet in an equilateral triangle. Rota claims that this theorem, while
surprising, is not beautiful (Rota, 1997, p. 4) and suggests instead that what
characterizes beauty is enlightenment, an admittedly fuzzy concept which he
claims mathematicians do their best to avoid (Rota, 1997, p. 13).
Another answer to the question of why mathematics appears as beautiful comes
from Elaine Scarry, a professor of English at Harvard, whose work has recently
gathered attention even in mathematical circles. In her book “On Beauty and
Being Just,” (Scarry, 1998) she claims that beauty is, in essence, compelling. It
draws us to itself. This claim resonates with Poincaré, an eminent 19th century
mathematician who said, “The scientist does not study nature because it is useful
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to do so. He studies it because he takes pleasure in it; and he takes pleasure in it
because it is beautiful” (Poincaré, 1952, p. 22). The strong claim is that beauty
has some sort of allure, similar to that of pollen to the bee, which draws people’s
interest, allows it to replicate, and secures its future.

PREVIOUS RESEARCH AND MOTIVATION

If beauty is compelling, then it seems natural to ask whether it can play a mo-
tivational role in the teaching of mathematics. However, there has been sur-
prisingly little research about this question, and related questions, in the area of
mathematics education (ESM, 2002). Most of the work done on this area falls
under the broader, related notion of aesthetics, which involves a host of affective
components in addition to the experience of beauty, such as the experience of
pleasure. One recent example comes from Sinclair (2002) who created a model
to describe three important functions that aesthetics play in the working lives of
mathematicians: generative, motivational, and evaluative1. Burton (2004) used
this framework to study the aesthetic judgements of mathematicians, looking
at the connections between affective experiences of mathematics and intuitions
and/or insight that the pursuit of mathematics often provides. Other examples,
both from philosophy and mathematics education, include Mack (2006), Ty-
moczko (1993), and Wang (2001).
This study differs from the previously mentioned in that it specifically inves-
tigates the notion of beauty — we are not concerned in this paper with the
affective responses, or in fact any other psychological processes related to the
aesthetic experience. Another feature of the current study that differs from those
previously mentioned is that the main source of data is the mathematics itself,
though we draw on pilot data from an interview with one mathematician to help
support our analysis, and in a future study will look more closely at interview
data. We do not depart from a particular theoretical position, but rather hope to
build such a position through a systematic examination of the mathematics, as
demonstrated in the analysis below.
A brief look at how beauty is treated in curricular documents in different coun-
tries provides some motivation for the eventual outcomes of this project2. In
some countries, such as China, the aesthetic nature of mathematics is actively
researched and explicitly mentioned in the curriculum (e.g. Fu, 2004; Li, 2003;
Ministry of China, 2008)3. However, in other countries, such as the United
States, Sweden, and Finland, there is little or no mention of beauty. In Swe-
den, there is some explicit mention of beauty at the compulsory level, but not at
the high school level (Skolverket, 2000). Moreover, little or no information is
given about how beauty should appear in details such as task selection or teach-
ing practices. In the United States, beauty is not listed among the five content
and process strands that affect all K-12 levels (NCTM, 2000). Similarly, we
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found no mention of beauty in the Finnish curriculum (which does stress many
affective qualities, such as “courage” in solving problems)4. The kind of work
done here could eventually serve a purpose both in raising awareness of beauty
in countries that do not currently emphasize it and in articulating some of the
features of beauty that could be operationalized in curricular documents.

CURRENT PROJECT

The research described here is in its initial stages. The ultimate goal, simi-
lar to that described in Burton (2004), is to develop a theoretical model for
beauty against which we can compare the views held by working mathemati-
cians. To begin creating this model, we have proceeded fairly simple-mindedly.
We looked through the literature to find proofs that are commonly held to be
beautiful (e.g. Aigner et al., 2010; Wells, 1990). We wanted to choose theorems
that would be fairly uncontroversial but not overly discussed (such as a proof
of eπ·i = −1). We chose to focus on the beauty found in the proofs, not in the
theorems themselves (though the two are often linked). We also asked mathe-
maticians to suggest proofs that they consider beautiful, and now have a small
collection of these.
One theorem that appeared both in our literature search and as a suggestion from
a mathematician was Pick’s theorem, which provides a simple formula for find-
ing the area of a lattice polygon. This theorem is simple enough to be understood
and verified by middle schools students, while the statement and proofs of the
theorem have relevance for research mathematicians5. This feature makes the
theorem particularly useful for our study, since on the one hand it is challeng-
ing enough to present to mathematicians to obtain data, but on the other hand
it is accessible enough to allow us to investigate whether school age children
appreciate beauty (or have capacity to appreciate beauty) in similar ways.
Below we will examine two proofs of the theorem, the first suggested by a math-
ematician in our pilot study, and the second found in Aigner et al., 20106. These
two proofs were chosen because they are similar in many respects, except for one
which we would like to highlight, namely a respect that potentially gives rise to a
sense of beauty. The two features of beauty that we will highlight (among many
more that could be chosen, with other proofs, or even considering different parts
of these proofs, such as the lemmas that support them) are those of generality
and specificity. We suspect that these are two features that appear in many in-
stances of mathematical beauty and that they will show up as important features
when we interview mathematicians about their judgements of these two partic-
ular proofs. The goals of this analysis are to: (1) model the way in which we
will analyze proofs in our study; (2) show, via pilot data, how mathematicians’
beliefs might be connected to proof analysis; (3) present our preliminary results
to get feedback in order to improve the next iteration of our study.
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PICK’S THEOREM

Pick’s theorem gives a simple formula for calculating the area of a lattice poly-
gon, which is a polygon constructed on a grid of evenly spaced points. The
theorem, first proven by Georg Alexander Pick in 1899, is a classic result of
geometry7. An interior (lattice) point is a point of the lattice that is properly
contained in the polygon, and a boundary (lattice) point is a point of the lattice
that lies on the boundary of the polygon.
Theorem (Pick’s theorem). Let A be the area of a lattice polygon, let I be the
number of interior lattice points, and let B be the number of boundary lattice
points, including vertices. Then A = I +B/2−1.
For example, in the lattice polygon given in Figure 1a, there are 10 boundary
points and 11 interior points, so the area is 11+10/2−1 = 15. In any particular
case, one can of course confirm that this is correct by dissecting the polygon into
suitable triangles and rectangles.
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(b) Triangulated polygon

Figure 1: Example of a lattice polygon, with one possible triangulation

Below we give two different proofs of Pick’s theorem, which we claim are beau-
tiful in different ways. Both proofs use a method of double counting based on a
triangulation of the polygon (see Figure 1b). In the first proof, we count the an-
gles inside the triangles in two different ways. In the second proof we interpret
the figure as a connected plane graph (a connected network drawn in the plane
without crossing edges) and count the number of edges, using Euler’s formula
to relate the numbers of edges, faces, and vertices of the figure. We will draw on
the following three lemmas, which we state here without proof, as they will not
figure in the analysis and discussion. An elementary triangle is a triangle whose
vertices are lattice points, and has no further boundary points and no interior
points.
Lemma 0.1. Any lattice polygon can be triangulated by elementary triangles.
Lemma 0.2. The area of any elementary triangle in the lattice Z2 is 1

2 .
Lemma 0.3 (Euler’s formula). Let f be the number of faces, e the number of ed-
ges and v the number of vertices in a connected plane graph. Then v−e+ f = 2.
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PROOF 1: USING ANGLES

Proof. We begin by partitioning the polygon P into N elementary triangles,
which is possible by Lemma 0.1 (see Figure 1b). We now sum up the inter-
nal angles of all of these triangles in two different ways. On the one hand, the
angle sum of any triangle is π , so the sum of all the angles is S = N ·π . On the
other hand, at each interior point i, the angles of the elementary triangles meet-
ing at i add up to 2π . At each boundary point b that is not a vertex, the angles
of the elementary triangles meeting at b sum to π . At the vertices, the angles
do not add up to π , but if we add the interior angles at all the vertices, we get
kπ −2π , where k is the number of vertices, since the sum of the exterior angles
is 2π (see Figure 2). One can argue for this result by noting that walking along
the perimeter of the polygon, one completes one full turn, that is 2π . Note that
some exterior angles contribute a positive term, and others a negative term.
Let I be the number of interior points and B be the number of boundary points.
In all, the sum of the angles at boundary points is B ·π−2π , and the sum of the
angles at internal points is I ·2π . Therefore, S = I ·2π +B ·π−2π . We conclude
that N ·π = I ·2π +B ·π −2π , so canceling π we get N = 2I +B−2. Since by
Lemma 0.2 the area of any elementary triangle is 1

2, we have A = 1
2N and thus

A = I + 1
2B−1.
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Figure 2: Lattice polygon, with two exterior angles marked

PROOF 2: USING EULER’S FORMULA

Proof. We begin by partitioning P into elementary triangles, which is possible
by Lemma 0.1 (again, see Figure 1b).
We then interpret the triangulation as a connected plane graph, where vertices in
the graph are vertices of the triangulation, and edges in the graph are edges of the
triangles in the triangulation. This graph subdivides the plane into f faces, one
of which is the unbounded face (the area outside the polygon), and the remaining
f −1 of these are the triangles inside the polygon. By Lemma 0.2, each triangle
has area 1

2, and thus A = 1
2( f −1). This of course proves nothing; it is a simple

consequence of how we defined f .
An interior edge borders on two triangles, and a boundary edge borders on a sin-
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gle triangle and forms part of the boundary of the polygon itself. Let eint be the
number of interior edges, and ebd be the number of boundary edges. Counting
the number of edges in two different ways, we get

3( f −1) = 2eint + ebd. (∗)

Here we are overcounting to get the total number of edges of the collection of
triangles. The left hand side counts these edges using the fact that each triangle
has 3 edges. The right hand side counts them using the fact that each interior
edge contributes to two triangles, while each exterior edge contributes to one
triangle. We can also observe that the number of boundary edges is the same
as the number of boundary vertices, B = ebd, and that the number of vertices in
the graph is the sum of all the interior and boundary points, v = I + B. Euler’s
formula for the graph at hand states that

(I +B)− e+ f = 2, or e− f = (I +B)−2

where e = eint + ebd is the total number of edges. With some clever algebraic
rearrangements, starting with (*), we get

f = −2 f +3+2eint + ebd
= −2 f +3+2e− ebd
= 2(e− f )− ebd +3
= 2(I +B−2)−B+3 = 2I +B−1.

Thus we get A = 1
2( f −1) = 1

2((2I +B−1)−1) = I + 1
2B−1.

ANALYSIS AND DISCUSSION

To what extent are each of these proofs beautiful? We begin with some data
from a mathematician who thought the first proof was beautiful. One way in
which the proof is beautiful to him is that it gives meaning to the terms I, B

2 , and
−1. He explains, “In particular, I like that you can see that each boundary lat-
tice point contributes half as much total angle as each interior lattice point.” He
also said that he likes proofs that get information by counting the same things
in different ways. The particular choice of counting angle measures, though,
both contributed and detracted from the sense of beauty in this proof. He says,
“The fact that the proof involves angles is beautiful in the sense that it is un-
expected, but also ugly in that it breaks some symmetry.” Pick’s theorem, as
stated, holds for any lattice polygons, regardless of whether the lattice itself is
transformed in a way that preserves area. For example, if you shear the triangle,
the area is unchanged, but the angle measures change8. Thus the introduced new
quantity, angles, does not have the same property as the figure itself, which this
mathematician referred to as “unnatural”.
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In contrast, the second proof, using Euler’s formula, uses only quantities that
are invariant under transformation. What seems beautiful about it is that it turns
out be an application of Euler’s formula. One gets a sense of “even here, this
method can apply!” But whereas the second proof is more general than the first
(we introduce no auxiliary concepts) it is much less intuitive. The first proof,
besides the sophisticated application of double counting, is fairly elementary.
Even a grade school child can count the angle measures in both ways described
above. However, the second proof requires a bit more machinery to understand.
First you must conceptualize the plane in such a way that Euler’s formula applies
(which includes the somewhat strange step of considering the complement of the
polygon in the plane as a face in itself.) Also, in applying Euler’s formula, one
is resting on a result which by itself is not obvious. Even if one really believes
Euler’s formula and feels comfortable using it to get the result, one doesn’t get
a full understanding of the proof if one doesn’t in turn understand why Euler’s
formula is true. This reliance on heavy theory seems to be an aspect which
detracts from the beauty of the second proof.
We see then that in each of the proofs there is some feature that contributes to the
beauty and some feature that detracts. It turns out in this case that the features
are complementary. The feature that contributes to the beauty of the first proof
is missing in the second and vice versa. For instance, in the second proof, what
makes it beautiful is some sort of generality. This particular proof fits into a
family of proofs all of which are instances of Euler’s formula. In the first proof,
what makes it beautiful is some sort of specificity. The surprising use of angle
measures in the double counting introduces some unexpected element, which on
the one hand breaks the harmony of the proof, but on the other hand — perhaps
because of that breaking — becomes a compelling feature of the argument.
Both proofs appear to contain an element of surprise, but the nature of that sur-
prise is almost opposite. In the first case the surprise arises from the specificity.
We contend that the pleasure one gets from reading the proof is similar to the
feeling of finding a specific tool, like the correct size hexagonal screwdriver for
one particular screw. In the second case the surprise comes from the feeling of
generality. The sense of fitting in arises from there being a set of objects that
have a similar property. It is a wonderful, unexpected finding that this second
proof is one of those kinds of proofs. To continue the tool analogy, Euler’s
formula is the monkey wrench, that is suitable for a great number of different
situations.

CONCLUDING COMMENTS AND NEXT STEPS

To claim that generality and specificity contribute to the beauty of these proofs
through some element of surprise, we must return to Rota’s criticism that beauty
arises out a feeling of enlightenment rather than surprise. His critique was
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grounded on the fact that there are proofs that are surprising, but nonetheless
not beautiful. For now we leave this as an open question, with the possibility
that surprise might be a necessary (or at least contributing) but not sufficient
condition for beauty. We note, however, that what seems similar about surprise
and enlightenment is some sort of allure, something that grabs the mind’s inter-
est. And it might be this allure, or “compelling”-ness referring back to Scarry
again, that is the defining characteristic of beauty.
It seems fairly obvious to say that for a proof to be compelling, it must on the
one hand be not too simple, and on the other hand not too complex for the mind
to grasp. It might be that the features of generality and specificity are what keeps
these two particular proofs appropriately compelling. The specificity of the first
one makes the proof technically accessible. The generality of the second one
imparts a certain status. Another striking characteristic of these two features is
the fact that they play mirrored roles with each other — they are in a sense duals
— and the way in which they mirror each other is that one contributes to beauty
in exactly the way that the other detracts. At first the fact that two seemingly
opposite characteristics could both give rise to beauty might seem contradictory,
but we offer another interpretation: that beauty arises from the interplay of a
sort of access and restraint. A potentially beautiful object which was completely
accessible might not appear beautiful, just as a potentially beautiful object that
is completely hidden would never be able to be experienced as beautiful. The
proof based on Euler’s theorem brings out some sort of hidden structure; the
proof based on angle measures provides a specific instantiation of an otherwise
seemingly common sort of mathematical tool. Generality and specificity might
not be just two features of beauty– they might turn out to be exactly the aspects
of mathematical expression which provide the needed tension to give rise to the
sense of beauty. We do not rule out that there might be other features that give
rise to beauty, but from our preliminary analysis, we are willing to commit that
the fact that we found these two particular features here is not surprising, nor
idiosyncratic.
This study was meant as a first step into a rather large inquiry domain. The goal
was to make the pursuit of a study of beauty in mathematics tractable, both in
terms of methods and potential results. This study gives rise to a few hypotheses
that we would like to investigate (and invite others to investigate!) in future
studies. These include:

• The features of generality and specificity are not idiosyncratic. They appear
in a wide number of proofs commonly held to be beautiful.

• There is consensus among mathematicians, not just about which proofs
and/or theorems are beautiful, but also about what gives rise to the sense
of beauty.
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• The fact that generality and specificity are related, as duals, is also not a
coincidence. If there are other features that give rise to beauty, they will
also be related in a way that creates some sort of tension, and the sense of
beauty that arises will be related to this tension.

NOTES

1. A description of these functions is given in Sinclair (2002): “The most recognized and public of the three roles of
the aesthetic is the evaluative; it concerns the aesthetic nature of mathematical entities and is involved in judgments
about the beauty, elegance, and significance of entities such as proofs and theorems. The generative role of the
aesthetic is a guiding one and involves nonpropositional modes of reasoning used in the process of inquiry. I use
the term generative because it is described as being responsible for generating new ideas and insights that could
not be derived by logical steps alone. Lastly, the motivational role refers to the aesthetic responses that attract
mathematicians to certain problems and even to certain fields of mathematics.”

2. Thanks to the following people who provided information on statements about beauty and aesthetics in curricular
documents: Antti Viholainen (Finland), Kirsti Hemmi (Sweden), Aihui Peng (China). We welcome examples from
other countries, especially those that incorporate beauty in a meaningful way.

3. Some examples of curricular statements include “appreciate the aesthetic value of mathematics theorems and
mathematics methods”, “experience the flexibility, the elegance (similar to the beauty, but higher than beauty, and
ingenuity of mathematical proof”, “experience the beauty of figure”.

4. See http://www.oph.fi/english/publications/2009/national_core_curricula_for_basic_
education.

5. See http://www.cut-the-knot.org/ctk/Pick_proof.shtml for a web application of a classic way of
introducing the task to middle school students. And see Sally & Sally (2007) for a lovely exposition of how this
task can be made relevant to people of all ages, from school children to research mathematicians, not just in terms
of verfiying the theorem, but in terms of really understanding the underlying ideas.

6. These two proofs correspond closely to the two proofs given in Sally & Sally (2007).

7. The original proof is found in Pick (1899), and some history given at http://jsoles.myweb.uga.edu/
history.html.

8. However, the argument involving angle measures (Proof 1) works for transformed lattice polygons as well.
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